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   A barrel racer trains many years to move in sync with her horse. To keep her seat, 
she rises and falls in phase with powerful centripetal lunges around each barrel. The 
result is a skilled coordination in which rider and horse gallop  together. Consider 
another example. A teacher steps forward while speaking. Every step  pre-engages 
coordinative structures, flexing and extending muscles across torso, arms, and neck to 
guarantee balance in a continuous anticipatory flow. The racer needs only to race, and 
the teacher to teach, but what happens is a vastly complicated coordination of minds 
and  bodies with their environments. Coordination is essential to cognition and 
behavior, yet except in motor coordination it has not been a prominent topic of 
cognitive science.

    In this essay, we discuss how complexity science has filled this gap. We begin 
with problems inherited from conventional cognitive science, for example the question 
of intentionality. We then discuss conceptual building blocks of complexity with respect 
to brains, bodies, and behavior. These include constraints, phase transitions, 
interdependence, and self-organized criticality  – concepts that address emergent 
coordination among system components. From there we go on to discuss ubiquitous 
pink noise in human performance. Pink noise is a fundamentally complex phenomenon 
that reflects an optimal coordination among the components of person and task 
environment. Departures from this optimum occur in advanced aging and dynamical 
disease, including Parkinson's disease, as we will discuss. We conclude this essay with a 
survey of present challenges and opportunities for complexity and cognitive science. 

1    INTENTIONALITY AND OTHER DILEMMAS

Intentionality  is central to subjective experience and permeates all human activities. It 
plays an equally  prominent role in cognitive experiments, with special significance for 
cognitive science. Before meaningful data can be collected, intentions must be invoked 
in the participant to perform as instructed. Data -- the foundation of what scientists 
know about cognition -- depend fundamentally  on the will, purpose, and goals of the 
participant. Yet the role of intentions in data collection and laboratory experiments is 
usually  ignored [Vollmer, 2001]. Indeed a Science Watch forum concluded that 
experiments tap involuntary, automatic, or unconscious processes exclusively [Science 
Watch, 1999].
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Intentionality  suggests a capacity  to bring behavior into existence, to cause 
behavior. The intention to step  forward to teach, for example, might cause the right leg 
to move forward. Yet intentions cannot be ordinary causes and still make sense 
scientifically. This is because the causal viewpoint ignores the question of what causes 
the intention in the first place. Maybe the intention to step  was caused by the intention 
to teach, and the intention to teach was caused by  the intention to remain employed. 
Still what caused the intention to remain employed? Either the intention to remain 
employed has a magical status, as a prime mover homunculus, or we enter the logical 
regress of seeking the cause of the cause of the intention to behave [Juarrero, 1999].

Intentions also require that cognition stays open to outside factors to promote 
intended goals, while at the same time ignoring irrelevant factors that might derail them. 
Once instructed to pay  close attention to ball handling in a basketball game, for 
example, the observer will fail to notice the man in the gorilla suit  who stops and 
pounds his chest while walking through the scene [Simons and Chabris, 1999]. How 
does the mind stay connected to the outside world, but only selectively, in pursuit of its 
goals? The question is to the crux of selective attention, the capacity to turn a blind eye 
to aspects of the environment that are irrelevant  to purposes at hand [Mack and Rock, 
2000]. A conventional solution might be a decision device that could select relevant 
factors and purposes. Yet which homunculus decides whether things capture involuntary 
attention? 

Of course dilemmas in conventional cognitive science are not limited to questions of 
intention [Hollis et al., 2009]. Take for example the coming into existence of a 
completely novel insight or novel behavior. The dilemma stems from equating cognition 
with information processing, either as mentalese by  analogy to language, computation 
by analogy  to computer software, or activation by analogy to neurons, synapses, and 
action potentials. For information processing, novelty  becomes either a simple 
combination of existing structures, juxtaposed or added together in representations, or 
novelty must preexist in some way before the novel behavior is realized. The latter 
solution yields another logical regress: If the cause of novelty  preexists, then what 
caused the preexisting cause of novelty?

Another dilemma in conventional cognitive science is presented by  the protracted 
failure to connect mind to body. Conventional theories have failed to bridge the gap  that 
separates mind and body. This failure to naturalize mental constructs stems from the 
causal gamble that functional components of cognitive activities, perception, and 
memory can be isolated and explained [Bechtel, 2009]. Yet the gamble has led to a 
hodgepodge of conflicting mechanisms, with little agreement about details such as 
boundaries or number of mechanisms, the ontological status of mechanisms, the relation 
between cognitive mechanisms and brains, or the developmental basis of cognitive 
mechanisms, e.g., [Dreyfus, 1992; Harley, 2004; Searle, 1980; Stanovich, 2004; Thelen 
and Smith, 1994; Uttal, 2001; 2007; Watkins, 1990; Weldon, 1999]. Lacking clearly 
worked out cause and effect relations, mind and body  appear to lack common currency 
for interaction. And regarding the results of neuroimaging research: “How do we say 
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something is somewhere if we do not exactly know what that something 
is?” [Greenberg, 2002, p. 111]. 

The often-voiced hope of the larger research community is the possibility  that 
converging data and theory  may themselves sort out the existing hodgepodge. Perhaps 
converging operations remain to be discovered, maybe through a triangulation of 
mutually  acceptable results about brain, behavior, and conscious experience [Roepstorff 
and Jack, 2004]. However, this hope continues to rest  on the assumed causal and 
methodological transparency among brain, behavior and consciousness. Transparency 
requires concatenated effects, meaning effects follow one from the other like dominoes 
tipping one into the next down a line. Consequently, interaction effects must be additive 
in proportion to factorial manipulations, but linearity  and additivity  are scarcely evident 
or nonexistent [Van Orden and Paap, 1997]. Each cognitive factor appears to interact 
multiplicatively with every other, and each interaction changes in the context of every 
new additional factor. Consequently, the sum of evidence across the vast  empirical 
literature of cognitive science yields an equally  vast higher-order multiplicative 
interaction [Van Orden et al., 2001]. The unsupported assumption of transparency and 
concatenated domino effects has resulted in a crisis for measurement, which is seldom 
discussed [Michell, 1999].

Complexity theory  circumvents these dilemmas by emphasizing emergent 
coordination, temporary dynamical structure, and the creation of information in 
behavior. Complexity science is not concerned with cause and effect primarily, so it 
averts dilemmas that arose from seeking causes of behavior as information processors 
or homunculi. Those efforts are replaced by  a search for strategic reductions to laws, 
principles, and mechanisms of emergent  coordination. Such strategic reductions find the 
same principles at work across different systems and at all levels of a system. In the 
next section we describe ideas from complexity science that introduce these principles.

2    CONCEPTUAL BUILDING BLOCKS

The view of human behavior as emergent coordination offers a new and theory-
constitutive metaphor for cognitive behavior, a complete reconstitution of method, 
theory, and assumptions. In this section, we define theoretical terms of complexity 
science that have proven useful in cognitive and behavioral science. They  culminate in 
the ideas of self-organized criticality  and soft-assembly: Living systems are attracted to 
optimal temporary  states of flexible coordination, which best guarantees contextually 
appropriate behavior and the wellbeing of the actor. 

2.1    Constraints and Control Parameters

Constraints arise in relations among a system’s components, and they reduce the 
degrees of freedom for change.   Consider  the  constraints  that limit the range of 
motion of an  arm  or a leg.  Relations among  joints, muscles,  fasciae,  and the nervous
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system allow limbs to move some ways, but not others. They reduce the degrees of 
freedom for change in limb motion. An expanded example of constraints, less tangible 
perhaps, is the indefinite sea of constraints among living beings and their worlds 
[Shanon, 1993]. These include relations with artifacts and the environment, the myopic 
limits on attention and stream of consciousness, the constraints that arise from 
idiosyncratic details of each actor’s previous history, and in relations to other living 
beings. 

Even with limiting constraints, however, a body in motion retains far too many 
degrees of freedom to be explicitly  or mindfully controlled. For example, estimating the 
parts to be coordinated, a human body has something like 102 joints, 103 muscles and 
1014 cells (Turvey, 1990). For each part that must be causally controlled, a conventional 
model must accord one controlling structure to each degree of freedom. Given that 
behavior is highly variable, causal resources are quickly  overwhelmed, historically  well 
known as the degrees-of-freedom problem in on-line kinematics of behavior [Bernstein, 
1967]. 

In contrast to causal control, complexity science emphasizes constraints as 
temporary structures, not unlike the temporary coordination among molecules in a 
convection cell. They are conceived as emerging from the temporary  coupling among 
embodied components and among components and the environment [Van Orden et al., 
2003]. Like a newly formed convection cell controls the fluid molecules of which it  is 
composed, constraints reduce degrees of freedom in coordination. Emergent constraints 
have the capacity to further self-organize into still higher-order emergent structures. 
That is to say, first-order emergent structures may  combine iteratively into second-order 
and still higher-order temporary dynamical structures. This iterative capacity  has been 
observed in brain data, for example [Ito et al., 2005]: First-order emergent patterns of 
coordination, visible in coordination among signals of separate EEG leads, were 
themselves part of the second-order coordination across time. Iterative higher-order 
emergence is bounded only by material, temporal, metabolic, and informational limits 
of the system. 

Constraints that control behavior are summarized mathematically  in control 
parameters. To explain, consider the stepping behavior in infants: Soon after birth, and 
long before learning to walk, a young infant, held above the ground with feet touching 
the floor, will move legs and feet as though stepping. This early stepping behavior then 
disappears and remains absent until later in the first  year, when it reappears. A 
conventional causal story sees two different causes behind the two instances of stepping 
behavior, with no connection in between: Initial stepping behavior is attributed to 
primitive reflexes that  quickly disappear as the baby  matures; and the later stepping 
behavior is attributed to the maturation of a motor schema for walking [McGraw, 1945]. 

The  constraint  account,    in  contrast,    focuses  on  a  single  control  parameter  
to  capture  the  developmental  sequence  of  stepping  behavior.   In  particular,   there  
are  two  main  constraints  that   determine  the  availability  of  stepping  behavior:    
(1)   the  strength  of  the  baby’s  leg,   and   (2)  the  weight  of  the  leg.   The  relevant
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control parameter is a ratio that pits leg strength against leg weight. Early in develop-
ment, the baby’s legs are relatively  light in weight compared to how strong they  are, 
making initial stepping possible. As the baby gains weight, however, gravity’s pull on 
the heavy legs exceeds the strength of the legs, and stepping behavior disappears. In 
turn, as the baby  builds more strength during the first year, stepping behavior reappears 
[Thelen and Smith, 1994]. 

The control parameter for stepping behavior captures two salient relations between 
the infant actor and her environment. Specifically, the numerator in the example (leg 
weight) summarizes embedding constraints in the infant’s relation to the environment. 
This type of constraint delimits affordances, the dispositions of the surrounding 
environment directly relevant for action [Gibson, 1979]. Conversely, the denominator in 
the example (leg strength) concerns embodied constraints of the actor. This second type 
of constraint refers to effectivities, the capacities and capabilities of the actor to exploit 
the available affordances [Shaw et al., 1982]. 

Explaining change in behavior through changes in control parameters has several 
advantages compared to traditional accounts. First, control parameters give a more 
inclusive account of development because they can account for individual differences 
across participants. Imagine, for example, an infant with very strong (or very skinny) 
legs. Such a child is likely to retain the capacity for stepping behavior throughout the 
first year. The changing control parameter for this particular child can be measured 
precisely. Conventional accounts, on the other hand, require exceptional assumptions to 
account for idiosyncratic differences. The initial stepping reflex might be stronger in 
this child than in another, inhibition of the reflex might be delayed, or the motor schema 
might mature earlier than predicted – or some combination of these possibilities. 
Further problems arise in having to determine normative development in this case. Yet, 
movement and its development is hardly uniform [Adolph, 2009]. 

Second, control-parameters can account for ubiquitous context effects. In stepping 
behavior, context changes in holding a non-stepping baby  upright in a shallow pool, as 
opposed to outside of the pool, and previously nonexistent  stepping will now appear. Or 
the context can be changed by placing weights on the legs of a baby who can step – and 
existing stepping behavior will disappear [Thelen et al., 2002]. Conventional accounts 
assume that successful performance reflects the presence of an underlying cognitive 
structure, while unsuccessful performance reflects its absence. Such accounts are quick-
ly overwhelmed by  the sheer number of context effects, often found in the same person 
and after only trivial changes of context [Kloos et al., 2009; Van Orden et al., 1999].

At the minimum,  context sensitivity  requires that performance  reflect some form  
of   interaction  between  the  cognitive  structures  of  the  actor  and  the context  of  
the environment.   Yet complexity goes well beyond a mere interaction.  In each 
different context,   a different   mesh  of  available constraints reduces degrees of 
freedom to favor kinematics suitable for that  context or task protocol, e.g. 
[Balasubramaniam    et al.,  2000;  Flach,  1990;  Riley, 2007;  cf.  Glenberg,  1997].  
No  two  situations  yield  identical  constraints,      so  a  laboratory’s  situated  mesh  of 
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constraints specifies a unique niche for performance [Flach et al., 2007]. In a similar 
vein, no two persons embody identical constraints because no two persons have 
identical histories. Consequently, behavior in the same task will differ in quality as well 
as quantity [Ashby  et al., 1993; Balakrishnan and Ashby, 1991; Holden, 2002; Holden 
et al., 2009; Luce, 1986; Maddox et al., 1998; Molenaar, 2008].

2.2     Critical States

As behavior changes across development, say  from the presence of early stepping 
behavior to its absence, the relevant control parameter passes through a critical value, a 
value that defines a critical state of the system. In the stepping example, the critical 
value (and therefore the critical state) is reached when the pull of gravity exactly equals 
leg strength. Now the two opposing actions, stepping and not stepping, are in precise 
balance, and therefore equally  possible. In this critical state, even tiny changes in 
control parameters may tip  the balance and break the symmetry of the poised 
alternatives. That is to say, even tiny  changes in the environment-infant system can be 
relevant contingencies that break symmetry. 

Given that relevant contingencies are necessary to enact  behavior, and they suffice 
to enact behavior, they can be conceived as causes. For example, a hungry dieter who 
comes across a candy bar will likely eat it, though he might prefer to have made a 
healthier choice. The simple contingency of first coming across the candy bar enacts 
behavior consistent with the need for food. The mere sight of the candy bar therefore 
causes the dieter’s lapse in healthy eating. Laboratory findings sometimes discover 
nothing but effects of contingencies. This might explain why scientists take the 
prevalence of reported contingency  effects to imply the lack of intentionality in 
laboratory behavior, e.g. [Science Watch, 1999]. Conscious will might be nothing more 
than the illusion of causality  after all, e.g. [Wegner, 2002]. Yet these conclusions are 
misguided. Before a contingency can enact behavior, the body must already be in a 
critical state. Available constraints must first specify propensities to act. Only  then do 
mere contingencies have the power to cause behavior.

Critical states exist until relevant contingencies occur. Importantly, critical states are 
not perturbed by irrelevant factors, factors that  do not favor a particular action over any 
other. Change in a baby’s arm weight or finding a toy candy bar while hungry are not 
sufficiently relevant to the specified critical states. Only relevant events can favor a 
relevant propensity. So, in a sense, the critical state can “filter out” irrelevant 
contingencies, and explain selective attention. It is the critical state that  allows the actor 
to stay open to outside events, without being derailed by irrelevant factors. 

The prominent role of critical states, susceptible to relevant contingencies, may also 
explain why mindful,  forbidding  self-control is notoriously  difficult to put into action. 
It is well known,  for example,  that a dieter  forbidding  himself  to  eat candy,  or 
telling   himself   to   "eat  healthily,"   are  ineffective  diet   solutions    [Baumeister  
and  Heatherton,  1996;   Rachlin,  2000].  A focus on healthy or unhealthy edible things 
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has the side effect  of instantiating propensities to eat that remain susceptible to 
accidental candy bars. In an effective solution the dieter concentrates on the abstract 
end-goals of dieting, such as facilitating connectedness to others, or a change in 
personal wellbeing [Fujita and Han, 2009]. The more abstract goal is less likely to 
include propensities for kinematics to grab up the first food available. The abstract 
focus makes candy bars less salient as food and more salient as diet busters.

Critical states are not only relevant to understanding selective attention and the 
relevance of contingencies. Far beyond, they are proposed to be the center of 
coordination. Rather than coming into existence passively, as control parameters 
change, complex systems are drawn toward critical states, they self-organize critical 
states [Bak, 1997; Bak et al., 1987]. Note the superficial paradox of self-organized 
criticality: Critical states are by nature unstable, given that the smallest relevant 
contingency  can collapse the system into one action or another, so critical states must be 
repellers, boundaries between basins of attraction. However, critical states can also be 
attractors [Chialvo, 2008]. 

2.3    Phase Transitions

As the system passes through a critical state, a phase transition takes place. The term 
phase transition comes from thermodynamics and describes how phase relations among 
molecules change suddenly and qualitatively to more efficiently  dissipate heat. As a 
system passes through a critical state (and a control parameter passes through the 
critical value), the system components suddenly and spontaneously reorganize to 
produce a different kind of behavior, together at almost the same time. Immediately 
before a phase transition, disorder will increase in the system. This increase coincides 
with the break up of existing structure prior to the reorganization. After the phase 
transition, the level of disorder drops to a lower level than the level it was originally. 
This drop is called negentropy, and it stands for the difference between the entropy 
before the start of the phase transition and the entropy  immediately after the phase 
transition. Negentropy coincides with the emergence of new thermodynamically 
advantaged structure due to an increase in how quickly the system can export entropy.

Changes in entropy have been observed for phase transitions that occur during 
problem solving  [Stephen et al., 2009].   Given the turning direction of the first gear in 
a  chain  of gears,  the  problem to be solved  was  the  turning  direction  of the last 
gear.   Typical  participants  transition  from  tracing  the  direction  of  each gear  to a 
parity  strategy,  after the insight that every other gear turns in the same direction  
[Dixon and Kelley,  2006;  2007;  Schwartz and Black, 1996;  Dixon and Bangert, 
2004].  Angular velocities of finger movements were densely sampled across trials of 
separate  gear  problems.   As expected,  entropy in angular  velocity  increased just 
prior to the phase transition, while negentropy was observed immediately  after. The 
pattern  was  replicated  in  densely sampled  eye movements  in the  gear-turning  task 
[Stephen  et al., 2009],   and it  was  found   in  a  balance-beam   problem-solving   task 
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[Cox and Hasselman, 2009]. Negentropy results are compelling. They suggest that new 
problem solutions are thermodynamically  advantaged, a profound similarity  between  
phase transitions in problem solving and phase transitions in nonliving physical 
systems.

Bifurcation theory provides a mathematical account of phase transitions in nonlinear 
dynamical systems. The change from the absence to the presence of a behavior, say, 
from absent stepping behavior to stepping behavior, is one kind of bifurcation, while a 
change from one type of behavior to a different type of behavior is a different kind of 
bifurcation. Through reliable mathematical accounts, the nature of phase transitions can 
be understood [Meillassoux, 2008]. Moreover, if bifurcation theory should fail to 
illuminate changes among coordinative structures in human behavior, we would lack 
any other alternative in which qualitative changes generalize across instances.

Phase transitions occur in many living and nonliving systems. A mix of chemicals 
forms qualitatively different patterns when the petri dish is tipped; amoebas lacking 
sufficient food resources transition from single-celled organisms to a multi-cell spoor-
bearing slime mold [Nicolis, 1989], coordination between human behavior and a 
metronome-beat transitions from syncopation to synchrony as the metronome speed 
increases [Kelso, 1995], just to name a few. Despite differences in types of systems, 
these phase transitions share common diagnostic patterns, called catastrophe flags, with 
common theoretical underpinnings. 

Examples of catastrophe flags include critical fluctuations and critical slowing, both 
of which were observed in phase transitions of brain and behavior [Kelso et al., 1992]. 
The behavioral task was to flip a switch repeatedly between the beats of a metronome, 
in syncopation with the metronome beats. This task was chosen because syncopation 
behavior loses stability at a critical value of metronome frequency, and then transitions 
to synchrony, flipping the switch on the beat [Kelso, 1995]. To test for catastrophe flags 
in this phase transition, metronome frequency was increased incrementally  to perturb 
the coupling between participant and metronome. SQUID brain images, EEGs, and 
behavioral measures were recorded continuously. Indeed, just before the phase 
transition, the perturbation produced critical fluctuations and critical slowing. That is to 
say, in all measures there was a nonlinear increase both in the variability in the phase 
relation between beat and behavior (demonstrating critical fluctuations) and in the 
recovery time after perturbation to regain syncopation (demonstrating critical slowing). 
It was as though a protracted struggle occurred in brain and body  to decide which 
propensity would be expressed, syncopation or synchrony.

The  crucial  finding,  however,  was that  brain and behavior  reorganize together,  
at  the  same  time,   too close in time to allow information processing.   In particular, 
the  lag  in  reorganization  of  brain  and  behavior  was  no  more  than  170  msec,   
not  enough  time  for  information  processing,  though  sufficient  time  for  the 
creation of information in the collapse of a critical state. The virtually simultaneous 
reorganization of brain and body   agrees  with  reports  of ultra-fast  cognition,   reliable 
perception  after  impossibly  brief  visual  displays,   for example,   and  reliable  cogni-
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tive performance with electric speed. Perception and action occur too fast to allow for 
information processing to take place. Sometimes the body appears to make do with one-
way activation, traveling at speed, from eye to hand [Fabre-Thorpe et al., 2001; Fabre-
Thorpe et al., 1996; Greene and Olivia, 2009; Grill-Spector and Kanwisher, 2006; 
Thorpe, 2002; VanRullen and Thorpe, 2002].

2.4    Interdependence and Soft-Assembly

Is it surprising that finger movements reveal the same changes in entropy as eye 
movements during the phase transition in a problem-solving task? Neither finger 
movements nor eye movements have an obvious causal connection to the participant’s 
reasoning or to the novel insight. Yet they both show characteristic signatures of a phase 
transition. Complexity  theory anticipates such coupling. This is because components of 
a complex system are interdependent, one with another; they change each other's 
dynamics as they interact with each other. Interdependence allows soft assembly of 
behavior, meaning that  behavior emerges and cannot be parsed further, or reduced, into 
component functions that would exist  in a dormant state, even when their behavior is 
not present [Hollis et al., 2009; Kloos and Van Orden, 2009; Turvey and Carello, 1981].

Interaction-dominant dynamics are the basis of interdependence and emergence; 
interactions among components dominate the intrinsic dynamics of the components 
themselves [Jensen, 1998]. Interaction-dominant  dynamics originate in multiplicative 
interactions and feedback among the interacting components. As a result, they predict 
non-additive, strongly nonlinear effects [Holden et al., 2009], and emergent properties 
that cannot be deduced from causal properties of components [Boogerd et al., 2005]. In 
contrast, component-dominant dynamics underlie the expectation of additive effects 
embedded in Gaussian random variability  [Van Orden et al., 2003]. Gaussian variability, 
for example, is the variability  of independent perturbations that sum up as measurement 
noise.

A consequence of interdependence is to allow a system's phase space to be 
reconstructed from a well-chosen one-dimensional data series of repeated 
measurements. In essence, if every part affects every other part then coordinated 
changes can be recovered from measured values kept in the time-ordered sequence in 
which they  were collected. The reconstructed phase space is a rearrangement of data 
points as neighbors, which means they are close together in the phase space and 
products of the dynamics in that neighborhood. Phase space reconstruction requires the 
right tools of course, and elegant mathematical theorems, now taught in undergraduate 
mathematics classes, prove that higher-dimensional neighborhood structures can be 
unfolded and made available for additional analysis [Mañé, 1981; Takens, 1981].

If  each  component’s  dynamics   is  entangled   with  the  dynamics  of  every  
other  component,  it  can  become  impossible  to  isolate  components  and  study  
them separately. So how do we determine which components are involved in a 
particular cognitive activity? This concern reflects the strategy of seeking isolated 
components,   typical of conventional information-processing accounts.   It is motivated
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by the idea that the parts of a system have distinct functions that are preserved or 
encapsulated through component-dominant dynamics. Component-dominant dynamics 
underlie the expectation that behavioral effects result from interaction among 
components that do not change their intrinsic properties [Van Orden et al., 2003]. An 
arch is an example of a component-dominant system. While blocks interact to form an 
arch, they are not interdependent in their function. Supportive properties of a particular 
arch can be deduced from the material composition and arrangement of the component 
blocks. 

How do we know if a system is driven by component-dominant or interaction-
dominant dynamics? The crux is whether the system shows strongly emergent 
properties. Component-dominant systems have only weakly emergent properties and 
their behaviors can be deduced from causal properties of components and their 
arrangement, see also [Boogerd et al., 2005]. Conversely, interaction-dominant systems 
have strongly emergent properties, visible in catastrophe flags discussed earlier. They 
are also expressed in scaling relations across repeated measurements. Such scaling 
relations are now so commonly observed in cognitive science that  they  are claimed to 
be universal [Gilden, 2001; Kello and Van Orden, 2009; Riley and Turvey, 2002]. They 
are even found in subjective evaluations of wellbeing, such as repeated self-esteem 
ratings over the course of a year [Delignières et al., 2004], or changes in mood over the 
course of a day  [Isenhower et al., 2009]. They provide strong evidence that human 
behavior soft assembles in interaction-dominant dynamics.

2.5    Homeorhesis

At one time, medicine, biology, and the behavioral sciences embraced homeostasis as 
the guiding dynamic of wellbeing. Figure 1 illustrates how repeated measurements 
would appear in homeostatic dynamics. Homeostasis assumes mean values come from 
set points of a system, and random noise around the mean values comes from external 
perturbations. Absent external perturbations, homeostasis predicts that systems come to 
rest at their average values. 

Figure 1. A random noise data series centered on a mean value indicated by 
the red line, to illustrate homeostatic behavior. The random variation comes 
from perturbations to the static mean. 
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In line with this hypothesis, the body was thought to sustain an average heartbeat, 
for example, to satisfy the average needs of cells for nutrients and oxygen. Organisms 
were thought to find sufficient food to maintain an average nutrient base. And medicine 
acquired the goal of returning systems to their capacity to sustain homeostasis, 
sometimes recruiting artificial devices to do the same job [West, 2006]. Although 
homeostasis was intuitive, it did not correctly anticipate the ubiquitous cycles in living 
systems. The heart  does not have a reliable average time between beats and cycles of 
nutrient intake, energy liberation, and waste expulsion, essential for life, recur on the 
multiple scales of cells, organs and the body as a whole. Homeostasis was therefore 
challenged by the homeokinesis hypothesis, in biophysics and physiology. 

Homeokinesis is the idea that a body and its relations to the environment can be 
broken down into distinct cycles of nonlinearly  stable dynamics. Homeokinetic systems 
repeat their behavior in limit cycles [Iberall, 1970; Iberall and McCulloch, 1969]. 
Figure 2 illustrates the predicted pattern of repeated measurements governed by 
homeokinetic dynamics, a limit cycle plus random noise. Proponents of homeokinesis 
assembled most of the conceptual pieces necessary for a robust account of variability in 
living systems. They could, in their time, with their tools, demonstrate component limit 
cycles (plus random noise) in physiology and all the way out into behavior, e.g. [Kay, 
1988]. However, evidence against homeokinesis existed even as it was proposed. This is 
because homeokinesis posited a distinction between dynamics on different timescales. 
For example, limit cycles of cell dynamics were thought to be independent of limit 
cycle dynamics of organs and organ systems, and between organisms and environments. 

Homeokinesis allowed interactions between cyclic processes, in nutrient and oxygen 
transport for example, but not  among their cyclic dynamics. Consequently, a change in 
an organism’s circadian rhythm with the environment should not change the cycle 
frequencies among organs or among cells. Yet, it is now widely  accepted that organism-
environment cycles are linked to the cycles within organisms. For example, a feckless 
chicken kept in constant red light (to break the entrainment with the environment’s 
circadian rhythm) suffers a break down of healthy coordination among heart rate, 
locomotor activity, and deep body temperature [Winget et al., 1968]. Healthy intrinsic 
dynamics of the chicken’s body require entrainment to the circadian rhythm to remain 
in order.

More slowly  changing cycles were eventually recognized as supplying supportive 
constraints to sustain faster changing cycles [Simon, 1973; Newell, 1990]. The 
hypothesis  predicts  that  more  slowly changing dynamics can constrain faster 
changing dynamics, but not vice versa. The prediction leads to a nonsensical 
conclusion,  however,  considering current knowledge.  Timescales  of  behavior  do  
not  overlap  much  with  timescales of the brain.  Measured  changes  in  overt  
behavior happen on the time scales of  years,  months, days,  hours,  minutes, and 
seconds. Yet the brain’s slowest delta waves index changes with a period of about 2.5 
seconds [Buzsáki, 2006]. Therefore, timescales of behavior are mostly too slow to be 
controlled  by  the brain.  Even conscious self-control,  by some estimates,  occurs more 
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slowly than cycles in the brain, e.g. [Iberall, 1992]. So how could the brain function in 
control of behavior? A logical conclusion might be that the brain functions to smooth 
out the kinematics of behavior, in a kind of dithering function, like the high-frequency 
dithering that makes digital music sound more like analog. 

Eventually, with the development of new tools, scientists could reliably distinguish 
chaotic oscillators from limit cycles with random noise, e.g. [Mitra et al., 1997]. As a 
result, limit cycles were rejected as the basis of cycles in physiology  and behavior. In 
their place, a hypothesis of homeorhesis was proposed. Homeorhesis is the idea that  the 
dynamics of living systems reflect flexible entrainment to changes in their 
environments. It predicts a kind of flow of behavior through the environment that 
negotiates constraints, reflecting previous as well as present relations with the 
environment, e.g. [Warren, 2006]. Homeorhesis hinges on the idea that the brain, body, 
and environment soft assemble behavior. It is therefore a direct analog to the idea of 
interdependence and soft-assembly discussed above. 

To summarize Section 2, conceptual building blocks from complexity  science 
enhance our understanding of cognitive behavior. Embedding and embodied constraints 
combine in control parameters whose critical values define critical states of phase 
transitions. As a system passes through a critical state, the system undergoes a phase 
transition, a qualitative change in its organization to soft assemble qualitatively  different 
behavior. Phase transitions are identified using catastrophe flags like critical 
fluctuations and critical slowing. Phase transitions are shaped by  temporary dynamical 
structures as constraints, which allow flexibly situated soft assembly of cognition and 
behavior. In the next sections, we build upon and expand these ideas to discuss 
nontrivial changes in how to understand cognition and behavior.

3     THE THIRD KIND OF BEHAVIOR

Before complexity science, variation in repeatedly measured values was divided into 
two categories: regular changes from one measured value to another, or random 
changes.  Regular  changes  were  thought  to be the explainable variance,  while 
random  variance  was  equated  with  measurement  error.    In  cognitive  science,    ex-
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Figure 2. A sine-wave data series with added random noise to illustrate a 
homeokinetic process. The red line indicates the mean of a data series around which 
the limit cycle fluctuates.



plainable variance was conscripted to reveal component mechanisms of memory, 
reasoning, syntax, semantics, and so on. The empirical variance we describe in this 
section is neither regular nor random. It constitutes a third kind of variability, one that is 
captured in scaling relations and that cannot be categorized by conventional approaches. 

3.1      Pink Noise

The data series on the right in Figure 3 is decomposed into sine waves of different 
amplitudes, shown on the left. Slow changes in the data series are captured by  low 
frequency, high-amplitude, sine waves (top left),  and fast changes in the data series are 
captured by high-frequency, low-amplitude waves (bottom left). Amplitude reflects the 
size of change S(f) between values across the data series and appears on the Y-axis of 
the power spectrum, plotted against the frequency  (f) of changes at that size. The 
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Figure 3. One person’s response time data. Specific frequencies and amplitudes of change to 
approximate the rough graph of the data in the upper right of the figure, plus the outcome of 
the spectral analysis below. The spectral slope = -.94, which is approximately   ! " 1. Note 
that the Y-axes in the illustrations have been adjusted to make smaller amplitude sine waves 
visible. 



relation between size and frequency of change is the scaling relation estimated by the 
slope of the line in the spectral plot. 

In the scaling relation illustrated in Figure 3, the size of change S(f) is inversely 
proportional to its frequency (f): S(f) = 1/f ! = f –!, with scaling exponent ! " 1. It is this 
value of the scaling exponent  that reflects the third kind of behavior. It  is called pink 
noise because visible light with the same spectral slope has a pinkish cast from power 
concentrated in lower, redder frequencies. We use the phrase pink noise throughout, due 
to its accidental association with old-fashioned phrases about wellbeing, like in the pink 
and pink of health. However, depending on discipline, the phenomenon may be called 
flicker noise, 1/f noise, 1/f scaling, intermittency, multiplicative noise, edge of chaos, 
fractal time, long-range correlations, red noise, self-affinity, or something else. 
Similarly, there are many ways to portray this behavior in numerical and geometric 
analyses, each with its own vulnerabilities and caveats [Holden, 2005]. The many 
different names give credence to a core thesis of complexity  science that common 
dynamical organizations will appear in systems of different material construction, even 
in living and nonliving matter.

What is the meaning of pink noise? Debates about  this question have taken place in 
every  discipline that has confronted complexity, including cognitive science [Chen et 
al., 2001; Dale, 2008; Delignières et al., 2008; Ding et al., 2002; Diniz et al., in press; 
Edelman, 2008; Farrell et al., 2006; Gilden, 2001; Kello et al., 2007; 2008; Kello and 
Van Orden, 2009; Newell and Slifkin, 1998; Riley and Turvey, 2002; Thornton and 
Gilden, 2005; Torre et al., 2007; Torre and Wagenmakers, 2009; Wagenmakers et al., 
2004, 2005; Ward, 2002; Van Orden, 2008; Van Orden and Holden, 2002; Van Orden et 
al., 1997; 2003; 2005]. The difficulty  comes from the dual nature of pink noise, namely 
that it can appear as either a regular or an irregular phenomenon. The regularity is in the 
scaling relation, whether the basis of the scaling relations is a sine wave, square waves, 
V-waves, or irregularly spaced waves with different average frequencies. Yet pink noise 
appears irregular and unstructured in a data graph where it is an aperiodic waveform 
like random Gaussian noise or chaos. In truth it is neither regular nor random but a 
strongly nonlinear pattern that exists between their two extremes [Nicolis and Rouvas-
Nicolis, 2007; Sporns, 2007; Tsonis, 2008]. 
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Figure 4. Fractal branching of a tree.



The  crux  of  pink noise  is  self-similar  structure.  Mathematical  pink noise 
expresses  formal  self-similarity,   and  empirical   pink noise  expresses  statistical  
self-similarity,  not  unlike  the  branching  structure  of  a  tree.  From the bottom  to the 

top of a tree, branches become thinner in diameter as they become more numerous. The 
same relation holds even when a window on the tree is decreased and one considers 
only a part of a tree, as in Figure 4. In particular, the relation between branch diameter, 
S(f), is inversely  proportional with how often branches of that size occur (f). The re-
sulting scaling exponent stays within a narrow range of values. Fractal structure makes 
it appear that every scale of measurement is stitched together with every other scale of 
measurement (e.g., the decreasing scale diameters of tree branches), in a nested pattern. 

Comparable statistical self-similarity in fractal patterns can be seen in repeated 
measures of human performance, say when a participant produces simple reaction 
times, trial after trial (see Figure 5). A spectral plot across the entire data series of about 
8000 reaction times results in pink noise. Importantly, when the data series is cropped at 
both ends, such that only half of the length of the original data series is considered for 
the spectral plot, a similar spectral slope is obtained. Again, when the shortened data 
series is cropped further, the slope stays within a small range. Just  as for tree branches, 
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Figure 5. Trial-ordered series of reaction-time trials (left) and the resulting spectral plot 
(right). The top panel includes 8192 trials in the data series, while all other panels are a 
subset of the original data series. The first and last quarter are consecutively cut off to 
eventually yield a series with 1024 reaction times (bottom). The scaling relation remains 
very similar for each nested data series.



each repeatedly measured value of brain or behavior appears stitched to every other in 
the fractal wave.

Finally,  while  pink noise  has  statistical  self-similarity,  variance  within  a data 
set  does  not stay the same.  Note  in  Figure 5,  as  the  data  series  get  shorter,  values 

in the spectral plots shrink along the Y-axis (magnitude of changes), as well as along the 
X-axis (frequency of changes). 

In other words, large rare oscillations disappear as the data series shrinks in length. 
The inverse pattern is seen as more-and-more data are collected. Figure 6 portrays 
changes in the magnitude of variability as a data series gets longer. Variation grows by 
orders-of-magnitude as we gain access to rare but much larger amplitude changes in 
longer data series.

Conventional theories have difficulty accounting for the fact that more data equal 
more extreme variability. Conventional methods assume the opposite, namely that 
larger data sets yield more reliably stable estimates of average performance, meaning 
that error variance should not increase as more data points are collected. This is a false 
assumption as we have tried to illustrate. Longer data series include more extreme 
values, which destabilize the mean value of the data. No reliable mean value exists. This 
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Figure 6. Trial-ordered series of reaction-time trials (left) and the resulting spectral plot 
(right). The top panel includes the first 1024 trials, while all other panels increase the length 
of the data series. The scaling relation remains virtually the same for each increasingly 
longer data series.



fact undermines the very  foundation of conventional approaches, namely that variances 
can be ignored because data, at heart, are equal to their mean.

How does complexity  science explain the nested  fractal structure of pink-noise? 
The  self-similarity  of  a mature  tree,  for example,  is produced by  the iterative 
growth  processes of  the  living  tree.  An  iterative  process  takes its  present  status,  
or   output,  as  input  in  the  next  time  step.   In  the  tree  example,  the  same  growth 

processes of branching and thickening produce all the branches at all the different scales 
of the tree, and so the tree grows to resemble itself on large and small scales, and in the 
scaling relation between size and frequency  of branches. In human behavior the present 
status of a person is input to embodied interaction-dominant dynamics, which produce 
the status in the next time step, and so behavior unfolds to resemble itself across time in 
the scaling relation between the size of change and its frequency. 

Given these considerations, the following things appear true: Pink noise is neither 
regular nor random. Irregular, aperiodic data points are woven as an exotic fractal 
pattern. At present time, each repeated measurement of brains and behaviors appears to 
be sewn together in this fractal pattern. Within the pattern, every  measured value is 
long-range correlated with every other value to span the experiment. Complexity 
science first recognized the aperiodic, fractal pattern as a third kind of behavior.

3.2     Soft Assembly of Performance Devices

Complexity science suggests that we view performance as a soft-assembled 
coordination or coupling between task and participant. Given that every task entails a 
different set of constraints, a new coordination should emerge every time we change 
tasks. This was indeed found in a simple key-pressing experiment in which adults had to 
press a key  in response to a signal on a computer screen [Kello et al., 2007]. Two 
measures were taken: (1) the time it took the participant to press the key upon seeing the 
signal (i.e., key-press response time), and (2) the time it took the participant to release 
the key to return to the ready  position for the next trial (e.g., key-release response time). 
The two resulting data series (key  press and key release) were subjected to spectral 
analyses, which revealed pink noise in each separate data series. Importantly, however, 
the two streams of data were uncorrelated. Although each measured key-press time was 
long-range correlated with every  other key-press time, and each measured key-release 
time was correlated with every other key-release time, they were not correlated with 
each other. 

A conventional explanation would posit two distinct and independent decision 
mechanisms, one for key-pressing and one for key-releasing. Of course positing new 
decision mechanisms for every dissociated effect quickly loses the elegance of 
parsimony, given that a myriad of trivial changes in task demands of very simple tasks 
yield similar dissociations, e.g. [Durgin and Sternberg, 2002]. A claim of separate 
decision mechanisms for separate effects also undermines generality, given that a key-
press decision or a key-release decision has to be closely associated with the specifics of 
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the task. Finally, it is not clear why a decision about pressing a key  would require a 
different cognitive mechanism than deciding to release the key.

Complexity, on the other hand, explicitly predicts such dissociations, because 
performance is the becoming of a performance device entrained to the specific 
constraints  of  task  demands.   In some sense,  task  couplings  create  new  ‘devices’ 
of  the  participant   with  even  subtle  changes   in   task  demands.    Pressing   down  a 

key entails different constraints than releasing the same key  and, while the two 
movements are interleaved in time, their respective sources of constraint  may very  well 
change independently. To test these claims more directly, another key-press experiment 
was conducted, with one crucial manipulation: Instead of a predictable signal about 
which key to press, signals were alternated unsystematically which introduced 
uncertainty about  which key to press until the signal appeared. Again, two data series 
were collected, one for the time it took a participant to press a key and one for the time 
it took to release the key. The results showed that uncertainty about which key  to press 
affected the key-press data series, but not  the key-release data series. More specifically, 
while the key-release data series retained their pink noise pattern, observed before, the 
key-press data series were de-correlated by  the injected uncertainty and appeared closer 
to random noise [Kello et al., 2007].

Task coupling gives a simple and sensible account of the key-press response data. 
Unpredictable signals injected uncertainty  as an unsystematic perturbation of the 
entrainment to each trial’s signal to respond by pressing the key. The unsystematic 
perturbation resulted in less systematic coupling which de-correlated the otherwise 
long-range correlated data series. Key release durations were unaffected because the 
coupling of the key-release response was the same across all trials. The participant was 
always at a key contact point, at the bottom of a key-press, before the key-release 
response was initiated, irrespective of which key  was pushed down. At the bottom of a 
key-press response no uncertainty exists about which key-press to key-release.

Taken together, these key-press results support the idea that  the body coordinates 
itself into temporary performance devices to fit the specifics of the tasks. The apparent 
devices are soft-assembled coordinative structures. Even when tasks differ merely  in 
uncertainty about which key to press or the direction of the finger’s motion in key 
pressing versus key releasing, the body will appear to create specialized devices to 
accommodate the different demands. Devices do not refer to permanent mental 
functions or components, but instead exist only so long as the specific task demands are 
present and performance continues. 

3.3     Attraction to Complexity

As discussed in Section 2, the quality  of task-person coupling reflects the extent to 
which  the  effectivities  of  the participant  (embodied constraints) match the 
affordances of the task  (embedding constraints).  Pink noise  might reflect  such an 
ideal match between embodied and embedding constraints. Consistent with this 
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prediction,  pink noise  is  the  central  tendency of variability in skilled healthy 
behavior  [Kello  et al.,  2008].  Participants  were asked to say the same word 
(‘bucket’) over and over.  Each  instance  of the spoken word was then parsed 
identically  into dozens of frequency bins and the amplitude of each frequency-bin was 
tracked across all spoken instances of the word ‘bucket.’ This resulted in dozens of 
separate data-series,  and each data-series yielded  a  spectral  exponent.  Aggregating 
all the  estimated  scaling  exponents  in  a  histogram  yielded  normal  Gaussian  distri-

bution around the scaling exponent of 1. In other words, the coupling of healthy skilled 
participants to a repetitive speech task reveals evidence of attraction to pink noise. 

If pink noise reflects an optimal coupling for performance, then what are the less-
than-optimal types of coupling that the system is moving away from? As we mentioned 
earlier, pink noise lies between regular and random behavior. Still, how do regular or 
random behavior appear in this complex system? Little would be gained by positing 
hard-assembled causes of regular behavior plus different causes of random behavior. 
Instead, a single control parameter may serve to produce regular and random behavior, 
as well as behavior in between. The critical value of the parameter should yield pink 
noise, bracketed by attraction to over-random and over-regular behaviors. So what is the 
ratio of this control parameter?

Clues came from failed attempts in physics to corroborate self-organized criticality. 
The designated model system consisted of grains of sand, dropped one at a time to build 
a pile in which eventually, a dropped grain of sand triggers an avalanche. Volume and 
time between avalanches were measured repeatedly  but, contrary to expectations, sand 
pile avalanches never became sufficiently large to fill out a scaling relation between size 
S(f) and frequency (f). They appeared instead to be over-random inertia-driven 
avalanches, exclusively  irregular avalanche behavior. (For a review see [Jensen, 1998].) 
Self-organized criticality was found only after grains of sand were replaced with kernels 
of rice [Frette et al., 1996]. The rice kernels varied in their aspect ratio of kernel length 
to kernel width. Lower aspect-ratio kernels behaved like sand, while rice with higher 
aspect ratios yielded critical behavior. Higher aspect  ratios imply greater surface area to 
create more friction between kernels, sufficient to build small piles of rice, distributed 
throughout the larger pile, at  or near their threshold for toppling. With so much rice 
poised to topple, the rice pile could produce the large rare avalanches necessary  to fill 
out an inverse scaling relation between size of avalanche S(f) and frequency (f) of 
avalanches of that size. 

The control parameter of success and failure is the ratio of inertia to friction. The 
inertia-numerator is a source of over-random behavior, and the friction-denominator is a 
source of over-regular behavior, cf. [Kinouchi and Copelli, 2006]. Their ratio is the 
external control parameter of avalanche behavior. The specific ratio is anticipated in the 
ratio of inertia to viscosity  of Reynolds numbers in fluid dynamics and heat transfer 
[Iberall, 1970], so both ratios are nominated as external control parameters of 
complexity. 
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Piles with  ‘too much’  friction or  ‘too little’  inertia are too coherent and rule-
bound,  like  a  mud  pile  for instance. Piles with ‘too little’ friction or ‘too much’ 
inertia  are  too  random,  like  a  sand  pile.   Critical  behavior  is  found  in  the 
balance  between   regular  and  random  and  the  same  kind  of  control  parameter  
can  be envisioned  for  the  coupling  of  task  and  participant.  A control parameter 
that emphasizes over-regular tendencies yields the over-regular behavior that brackets 
pink noise;  but  if the parameter is  changed  to emphasize  over-random tendencies,  
the  coupling  between  task  and  person  yields  an unsystematic  relation  between size

and frequency of variation across repeatedly measured behavior, the over-random 
bracket.

Loss of structure, due to the over-random tendencies, is indicated in data by a white 
noise scaling exponent. The spectral portrait of behavior dominated by unsystematic 
sources of variation is illustrated in Figure 7, mapping out again a relation between size 
of change S(f) and frequency of change (f). Size is on the Y-axis and frequency  on the 
X-axis and their relation is the flat slope of the white line in the figure. White noise is 
disorderly, irregular, random noise. Changes of every size are equally  likely, as though 
sizes and frequencies were shuffled and dealt like cards into meaningless pairs. Any 
particular magnitude of variation is equally  likely  to be paired with any particular 
frequency of variation. This is represented in Figure 7 by the flat white line with a slope 
of zero (! " 0), the spectral slope of white noise.

The other bracket  must be over-regular behavior. However, even the most  regularly 
structured behavior in a living system will appear somewhat irregular, as illustrated in 
the data graph of Figure 8, from an over-regular heartbeat of a person with congestive 
heart disease. A spectral plot of the data series resembles brown noise, irregular 
behavior that is dominated by changes on slow time scales. The spectral slope of size 
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Figure 7. Spectral portrait of a random noise data series. The white line illustrates the slope 
of a regression line fit to the data: The slope of zero indicates the unsystematic relation 
between power and frequency.

 



S(f) against frequency (f) is shown in the Figure, very close to an idealized ! " 2. This 
slope is steeper than the spectral slope of pink noise due to over-regular oscillations in 
behavior. The steep slope of the line in the spectral plot suggests that large over-regular 
changes will occur, and that still larger changes quickly  become improbable. It 
emphasizes high-amplitude and low frequency in a relatively narrower range. All three 
categories of noise -- white, pink, and brown -- appear together in Figure 9, each with 
their characteristic ideal slopes. 

Self-organized criticality  predicts that performance will be drawn toward pink noise 
and attraction toward pink noise and away  from white noise was observed as adults 
gained practice with a Fitt’s tracing task [Wijnants et al., 2009]. Adult participants 
produced pinker data after practice. Participants were asked to trace between two dots 
on an electronic tablet as the trace-time from dot-to-dot was measured. After several 
blocks of practice, 5500 trace-trials total, the central tendency of the spectral plot had 
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Figure 8. Heart beat data of a patient with congestive heart failure in the graph on the 
left and a spectral portrait of this data series on the right. The brown line illustrates the 
slope of a regression line fit to the data: The slope is close to -2, indicating a scaling 
relation close to that of brown noise with ! = 2.

Figure 9. Summary characteristics of brown, pink and white noises. Data series appear 
on the left (together with their characteristic alpha values), and spectral slopes appear 



moved to ! " 1 of pink noise. The results are portrayed in Figure 10 to illustrate the 
statistical character of the phenomenon in developed healthy adults. 

In  development,  performance  is  drawn  toward  pink noise  from  two directions 
of change.  One direction of change was observed in development of gait in walking 
and   the   other  in  cognitive  performance  of  time  estimation.    In the cognitive task,

preschool children and adults were asked to estimate a short time interval over-and-
over, pressing a button each time it had passed. Spectral slopes of the variation in their 
estimates showed a developmental progression toward pink noise, and away from white 
noise, across age. The attraction was clearly visible in dynamics, while the average 
estimates only  marginally distinguished the youngest children from all other children 
and adults [Kloos et al., 2009]. 

In the walking task children and adults walked on a treadmill while stride interval 
times were measured [Hausdorff et al., 1999]. Like in the time estimation task, spectral 
slopes of stride variation showed an attraction toward pink noise as age increased, but 
this time slopes moved away from brown noise. Spectral exponents of 4 and 5 year-
olds’ gaits were heavily skewed toward the ! " 2 of brown noise, while exponents for 
adults are distributed narrowly and closer to pink noise (on the white side of pink 
noise). 

What accounts for the changes  in development,  and the differences between the 
two tasks?  The  plausible  hypothesis  for  development  overall  is  that  embodied 

Van Orden, Kloos, and Wallot                                                                                                                                      660                                                                                                                                                

Figure 10. Change in spectral slopes of data series across five consecutive blocks of 
practice in a Fitt’s tracing task.



constraints  and sensitivity to embedding constraints  are  not optimally tuned  for a 
child (or for an unskilled adult).  While both children and adults could do both tasks,  
the  task-child  system  was  not  coordinated  optimally.  Components  that  are  not 
well   coordinated    show   more   independent  variation,       which   perturbs   the 
task-system   coupling    of   repeated   measurement.     Across  development,   children

accrue sufficient constraints to better coordinate their bodies with the cognitive task. 
They  better accommodate arbitrary and idiosyncratic task constraints, and they can 
better sustain constraints of intentions that follow from a scientist’s instructions.

A plausible hypothesis for task differences is simply  different task demands. In 
walking on the treadmill, the task-child system shows evidence of over-rigid control. 
Not unexpectedly, when learning to walk children initially lock out degrees of freedom 
in legs and body to avoid falling. This over-rigid control yields over-regular behavior 
and brown noise variation in measured gait. With practice and development the child 
comes to embody flexible constraints among legs and body  to negotiate the varieties of 
terrain in the world. Fluid constraints allow less rigid control as the body flexibly 
adjusts degrees of freedom to negotiate the varieties of terrain with smooth gaits. 

Taken together, both practice and development reveal attraction toward criticality as 
pink noise. These patterns provide evidence that critical states are self-organized, 
meaning that living systems are drawn toward states of flexible coupling in which 
multiple propensities for action are available. They furthermore mark the endpoint of 
ideal coordination between body and environment. The next issue we explore then 
pertains to how the pattern changes as coordination deteriorates. 

3.4     Departure from Complexity

Pink noise is most prominent in simple tasks that repeat identical trials, e.g. [Gilden, 
1997]. The pattern changes however as tasks get more complicated. For example, the 
spectral slope is whitened when trial response decisions are made more difficult 
[Correll, 2008; Clayton and Frey, 1997; Kello et al., 2007; Ward, 2002]. Likewise, in a 
dual task experiment, walking on a treadmill while repeatedly estimating short time 
intervals whitened the spectral slope of time estimation [Kiefer et al., 2009]. Fractal 
patterns of gait in the dual task produced pink noise, probably because walking has 
greater priority  than time estimation. Both tasks produced pink noise as single tasks and 
the change away  from pink noise was only found in the dual-task scenario, and only  for 
the time-estimation task of lower priority.

In principle, one could also imagine a departure from pink noise in the direction of 
brown noise, as task constraints increased or participants adopted a strategy of over-
rigid control. This was the case for toddlers, for example, who locked down degrees of 
freedom needed for flexible control of gait. Provisional evidence was found in data 
from a driving-simulator in which lane positions are over-constraining (Geoff Hollis, 
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personal communication, October 6, 2008). Car position data resembled brown noise, 
but no condition was included that produced pinker data for comparison.

Similar departures from complexity are found in advanced aging and dynamical 
diseases    [Glass  and  Mackey,  1988].     With  advanced  age,  posture  and  gait  show

departure toward white noise in spectral plots, while heartbeat, body temperature, and 
neural activity (resting fMRI) show a departure toward brown noise. Figure 11 
summarizes age related changes. In atrial fibrillation, a rare form of heart disease, 
heartbeats depart from pink noise in the direction of white noise [West, 2006]. In 
Huntington’s disease, gait departs toward white noise [Hausdorff et al., 1997], and in 

Parkinson’s disease, gait, arm movements, and speech all depart in the direction of 
brown noise. What’s more the degree of departure from pink noise toward brown noise 
reliably  predicts the severity  of other Parkinson’s symptoms [Pan, et al., 2007], and the 
degree of departure toward white noise predicts severity of other symptoms in 
Huntington’s disease [Hausdorff et al., 1997].

Why does performance deviate from complexity  and pink noise in much the same 
way for task changes, aging, and dynamical diseases? Deviations toward white noise 
suggest loss of structure in dynamics or sources of unsystematic perturbations to the 
coupling of task and person, or between organ systems. Changes from pink to brown 
noise as health deteriorates suggest loss of flexibility  in dynamics or sources of over-
rigid control. Parkinson’s is typified by a loss of flexibility and over-regular 
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Figure 11. Departures from complexity due to advanced age. References: 1Beckers et al.,
2006; 2Varela et al., 2003; 3Wink et al., 2006; 4Duarte and Sternad, 2008; Lin et al., 2008; 
Norris et al., 2005; Thurner et al., 2002; 5Hausdorff et al. 1997.



movements: Patients can no longer produce smooth kinematics in response to rapid 
changes in the environment and they have difficulty  initiating and controlling motion. 
Figure 12 organizes Parkinson’s symptoms as they might appear in a complexity 
account and we discuss Parkinson’s symptoms next in more detail. 

Parkinson’s symptoms originate in damage to areas of the brain that  produce the 
neurotransmitter dopamine. Indeed, a conventional causal story might propose that the 
reduction in dopamine production disrupts a causal chain from stimulus to response, or 
intention to action. In line with this reasoning, dopamine has been marketed as the 
causal basis of the mind, the brain-within-the-brain, so to speak [Previc, 1999]. How-
ever, most prominent Parkinson’s symptoms, including reduced dopamine, have not yet 
found their place in a causal account. How do gradual changes in dopamine availability 
produce qualitative changes in perception, action and cognition? Why does Parkinson’s 
erode cognition along with mobility; and why do cognitive symptoms appear idio-
pathic? Why are fine-grain capacities most vulnerable early  in Parkinson’s? Basic 
neural conduction among modules is intact in Parkinson’s, and the conduction rate 
across neurons is plenty  fast to move fast-changing information through the nervous 
system. Why then do early Parkinson’s symptoms include disruptions in fast-changing 
perception-action cycles? The complexity explanation is subtle, speculative, but com-
pelling. The emphasis shifts from a faulty  isolated component  (such as a faulty dopa-
mine-uptake system) to faulty coupling among components. It is the erosion of system 
capacities to coordinate mind, body and environment that lead to loss of flexibility in 
behavior [Edwards and Beuter, 1999; Goldberger et al., 2002a; 2002b].

Dopamine bridges synaptic gaps between neurons to perpetuate electrochemical 
waves of action potentials, like any neurotransmitter. Action potentials create feedback 
loops of neuronal activity  that  self-organize into larger traveling waves. Traveling 
waves are an observable realization of emergent constraints in motor coordination, 
perception, and cognition [Davia, 2005; Freeman; 2000; Hollis et al., 2009; Kelso, 
1995]. Damage that reduces dopamine in the brain reduces the capacity for traveling 
waves to coordinate, which in turn affects cognitive functions, motor coordination, and 
the dynamics of physiology. Parkinson’s is systematically progressive. The first 
constraints to erode are those that change on the fastest  timescales -- they  are necessary 
for detecting subtle changes in emotional tone or social alliances, for making fine-
grained perceptual distinctions, and for initiating sudden or rapid movements. In other 
words, Parkinson’s first destabilizes the capacity to rapidly organize or reorganize 
perception and action.

Erosion of constraints on fast timescales explains the unwelcome palsy in 
Parkinson’s. In a sense, the palsy originates in less refined, less well-coordinated 
control. Palsy is a kind of overshoot phenomenon, like oscillations in room temperature 
around a thermostat setting. The relatively preserved capacities for constraint that 
change on intermediate timescales lack the finer-grain, faster-changing, automatic 
dithering control of constraints from faster timescales that insure smooth and precise 
movements. Parkinson’s eventually erodes intermediate and slow timescale capacities 
as well, such that late-stage Parkinson’s sufferers appear to express frozen postures and 
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gaits, although in truth they are moving on the very slow timescales of the last 
remaining capacities to constrain and change behavior.

The protracted unraveling of constraints from faster to slower timescales erodes 
capacities  to  coordinate brain,  body and  world,   including  the  coordination  of  cog-

nitive capacities. The subsequent deficit or lost cognitive capacities appear to be 
idiopathic symptoms because cognition expresses the idiosyncratic contingencies of a 
patient’s mental and physical history. Idiosyncratic histories of education, language, 
work, hobbies, travel, and health shaped the idiosyncratic strengths and stabilities of 
cognitive capacities well before the Parkinson’s began. They in turn shape the expressed 
cognitive deficits seen in an individual patient. Almost all healthy people walk and 
manipulate things with their hands much more – and indeed most Parkinson’s patients 
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Figure 12. Approximate progression of Parkinson’s disease, estimated from the cited 
descriptions of patients, plus pink and brown noise scaling relations as a backdrop.  
Parkinson’s first erodes constraints changing on fastest timescales and then intermediate 
and slow changing constraints. Eventually sufferers appear frozen in time although they 
continue to move on the very slow timescales of very slowly changing constraints. 
References: 1Double et al., 2003; 2Diederich et al., 2002; 3Ariatti et al., 2008; Lloyed, 
1999; Goberman et al., 2008; 4Aly et al., 2007; Jankovic et al., 1999; 5Hertrich et al., 
1997; Zhang and Jiang, 2008; 6Blin et al., 1990; Frenkel-Toledo et al., 2005; Hausdorff et 
al., 1998; Hausdorff et al., 1995; 7Allain, 1995; Howard and Binks, 2000; Price and Shin, 
2009; 8Abe et al., 2009; 9Peron et al., 2009; Grossman et al., 2000; 1Pan et al., 2007; 
Schmit et al., 2006; 11Hausdorff et al., 2003; 12Haapaniemi et al., 2001.



show similar deficits in gait and hand-eye coordination. In some cases, as capacities for 
constraint and change erode, however, control parameters of coordination cross their 
critical values. Consequently patients express additional idiopathy  as idiosyncratic 
changes to qualitatively different functioning, qualitative reorganizations of mind and 
body into tragically dysfunctional modes. 

In sum, the accumulated evidence nominates pink noise as the signature of 
complexity -- its third kind of behavior -- as in variability  that is neither too regular nor 
too random. Pink noise reflects an optimal flexible coordination that a system is drawn 
toward as it  develops or practices. Such optimal coordination can be obtained in accrued 
constraints (to move performance from white toward pink noise) or by  loosening up 
over-rigid constraints (to move performance from brown toward pink noise). Similarly, 
pink noise reflects an ideal from which a system departs as coordination deteriorates. 

4     CHALLENGES AND OPPORTUNITIES

In this final section, we discuss challenges and opportunities that complexity presents. 
They  include issues pertaining to the interpretation of scaling exponents, the 
naturalization of intentionality in principles that apply to nature generally, piecewise 
determinism, and emergent coordination among multiple actors. We discuss each in 
turn. 

4.1     The Scaling Exponent Dilemma 

An ideal coordination between task and person reveals itself in pink noise, a fractal 
pattern with a scaling exponent of about 1. A reasonable conclusion then would be that 
any scaling exponent reliably above or below 1 reflects a less-than-ideal coordination. 
More specifically, a scaling exponent closer to zero should reveal a coordination that is 
over-random, and a scaling exponent closer to 2 should reveal a coordination that is 
over-regular. Consistent with this interpretation, pink noise is characteristic of healthy 
adults performing a comfortable task, while white noise was found when task difficulty 
was increased, expertise of participants was reduced, or participants suffered dynamical 
diseases. 

However, the simple mapping of scaling exponent to kind of coordination does not 
fit with all the evidence. Take for example continuation tapping, a task in which 
participants tap  from memory after a metronome is turned off. Continuation tapping 
yields clear pink noise behavioral signals. However, a task in which participants tap  in 
synch to the beat of a metronome produces whiter signals than continuation tapping 
[Chen et al., 2001]. Why so? 

Intuitively entrainment in synch with a metronome should reveal over-regular 
coordination, because the beats of the metronome are so regular. Continuation tapping, 
without the metronome, should then yield less regular coordination by the same 
intuition. Going from tapping with a metronome to tapping without should decrease the 
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scaling exponent (reflecting change from over-regular to less regular). Yet, this is not 
what was found: Variability during entrainment to a metronome yields whiter scaling 
exponents farther from pink noise.

Another example comes from a time-estimation task, much like continuation 
tapping,    in  which  participants  were  either  provided  with  accuracy feedback or not 

(Nikita Kuznetsov, personal communication, August 23, 2009). Accuracy feedback is 
another source of external control – like the entraining metronome beat -- and should 
therefore promote over-regular structure in performance variability. However, while 
time estimation without feedback yielded a pink-noise signal, trial by trial accuracy 
feedback whitened the signal. Despite external sources for over-regular control, the 
structure of variability in both examples showed over-random tendencies. How can 
these findings be reconciled with the idea that  scaling exponents predict the type of 
coupling between person and task? 

The dilemma stems in part from the duality of pink noise, the fact that  pink noise is 
simultaneously  regular (it obeys an orderly  scaling relation) and irregular (it  is aperiodic 
nonetheless). In every estimate of pink noise, order and disorder trade off in the 
repeated measurements. A scaling exponent by itself is therefore inherently  ambiguous. 
To understand particular tradeoffs of order and disorder in performance, it is necessary 
to put the system in motion to examine changes in scaling exponents, rather than a static 
value. Nonetheless, these facts alone do not remedy the challenge to understand the 
whiter signals that results from entrainment and feedback.

To address the challenge, we revisit  the numerator and denominator of the control 
parameter we have relied on until now. Recall that the numerator, on the one hand, 
comes from affordances delimited by  embedding constraints of the environment or task. 
Affordances define the degrees of freedom available to the actor within the task. The 
denominator, on the other hand, comes from effectivities, which determine which 
degrees of freedom can be brought under control. In task performance, the degrees of 
freedom required in a successful performance must correspond as well to controllable 
degrees of freedom of the person’s effectivities. 

As for the control parameter in the example of entrainment, external sources of 
constraint increase when the metronome is running. This changes both the numerator 
and denominator of the control parameter. The numerator-source of over-random 
behavior is reduced as the available degrees of freedom are reduced, compared to no-
metronome conditions. An environment that supplies more constraint affords fewer 
degrees of freedom. At the same time, however, the metronome minimizes the 
denominator, the source of over-regular tendencies. Entrainment to the metronome 
minimizes degrees of freedom that must be controlled for successful continuation 
tapping.

The minimum value of the denominator means minimal sources of over-regular 
variation. Also, the previously  person-controlled degrees of freedom, for task success, 
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become available during entrainment as uncontrolled degrees of freedom, adding 
sources of over-random behavior and increasing the numerator. Altogether, these 
changes favor  over-random   sources  of  variability.   A  similar  argument  can  be     
made  for  trial   feedback.    Accuracy  feedback  supplies  constraints that reduce avail-

able degrees of freedom and therefore reduce requirements for successful performance 
from the effectivity  denominator. This releases previously person-controlled degrees of 
freedom. Constraints when present imply fewer degrees of freedom, so constraints 
when absent imply greater degrees of freedom. Whiter behavioral signals result.

However, consider another piece of evidence from the posture of elite ballet  dancers 
[Schmit et al., 2005]: A dancer’s torso remains upright, while she is in motion, over her 
body’s center of balance. This allows the visibly unique gait  in which a dancer can 
appear to glide across the stage. It controls for the ordinary tendency of torsos to move 
past the body’s tipping and falling point in each step. The over-trained posture ingrains 
constraints and controls degrees of freedom in posture. These constraints count among 
the effectivities the dancer brings to the dance. Effectivities are the sources of over-
regular variation in measured performance. Nonetheless, a whiter signal is observed in 
dancers’ posture compared to posture of ordinary adults or different elite athletes. The 
control parameter that accounted for whiter scaling exponents in entrainment and 
feedback fails to explain the dancer's whiter posture. To address this challenge, we must 
address a second challenge, namely that of voluntary control and intentions.

4.2      Naturalizing Intentionality

As discussed in Section 1, intentionality  has constituted a major stumbling block for 
conventional approaches. How then does complexity science solve the problem of 
intentionality? We have proposed that intentions affect behavior as constraints, not causes. 
Intentions as constraints are temporary dynamical structures, soft  assembled from 
interdependent components to function in control parameters to create critical states 
[Riley and Turvey, 2001; Van Orden and Holden, 2002]. Constraints circumvent 
dilemmas that arose from viewing intentions as causes [Juarrero, 1999]. Constraints are 
therefor no less natural than causes. Thus the complexity  account makes progress toward 
naturalizing intentionality.

Intentions are of the same nature as other natural constraints and should have the 
same consequences. In nature, constraints dampen vibration and oscillation for example. 
Intentions also dampen oscillations in the voluntary actions of Parkinson’s sufferers. 
The intention to move can eliminate palsy during movements early in the disease, and 
partly dampen it  in later stages. In nature, oscillations happen absent constraints, but 
properly constrained they disappear. In Parkinson's, the palsy appears in unintentional 
involuntary movement, but intentional voluntary movement dampens the palsy, so long 
as voluntary movement exists.
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The challenge from ballet dancers' posture still remains, however. We remain stuck 
with a control parameter that  predicts pinker or browner noise in dancers' posture and 
elite dancers whose posture reveals whiter noise. Otherwise, this control parameter 
predicted the direction of change for every  task and performer we have reviewed, within a 
plausible account of intentionality. Yet we have not successfully naturalized intentionality, 
due to  contradictory evidence.   But to meet this challenge,  we look for what is  common 

across the three exceptions here considered. What is it that is common to: (1) entrainment, 
(2) accuracy feedback, and (3) over-trained posture? Each example includes a prominent 
source of constraint, and each source of constraint functions to reduce or minimize the 
demands for voluntary control in task coupling.

The dancer requires less voluntary control to sustain erect posture. She has over-
trained posture to stand upright, even balanced on a force plate that measures variation in 
posture. In contrast, a Parkinson’s sufferer exhibits over-rigid control, to not fall down. 
Over-rigid control in Parkinson’s shows up as large deviations around the center of 
pressure of the force plate [Schmit et al., 2006]. Parkinson’s patients produce a browner 
pattern of variation in posture, compared to healthy  control participants who produce 
pinker variation. Thus reducing the need for voluntary  control is associated with whiter 
signals, and exaggerated purposeful control with browner signals. 

This pattern motivates a revision to the control parameter. The key  evidence 
motivating a revised control parameter is that reduced demands for voluntary control in 
the coupling between task and person yield performance dynamics that depart from pink 
noise toward white noise. If this fact proves reliable, then reduced voluntary control is 
reliably distinguished in empirical contrasts by whiter noise, all other things equal. 

We may  combine affordances and effectivities in the numerator to define available 
degrees of freedom, which has been the role of the numerator all along. The numerator 
now equals the difference between degrees of freedom, afforded, versus degrees of 
freedom that can be controlled (reduced) by  effectivities, as embodied constraints. 
Effectivities have been moved from the denominator to the numerator. What then is the 
denominator? We suggest that the denominator is volition, itself. Volition picks up the 
slack, so to speak, the remaining degrees of freedom, and reduces white noise in 
performance variation. 

The proposal presents a historical opportunity. Since Freud, the distinction has been 
made between consciously controlled, strategic, voluntary behavior versus automatic, 
unconscious, involuntary behavior. However, no empirical evidence for reduced voluntary 
control has yet stood the test of time [Fearing, 1970; Goldstein, 1939; Van Orden and 
Holden, 2002]. Each source of evidence, in its turn, has been found to be equivocal 
[Bauer and Besner, 1997; Besner and Stolz, 1999a,b; Besner et al., 1997; Kanne et al., 
1998; Pansky and Algom, 1999; 2002; Prochazka et al., 2000; Tzelgov, 1997]. 
Presently, the distinction is supported by intuition alone but if whiter noise in task 
coupling (departing from pink) is a reliable consequence of reduced voluntary control, 
then we have naturalized intentionality. 

Other challenges remain, however. Intentions satisfy needs and goals of the actor,  
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and in this  service, shape critical states that include propensities for serviceable actions.   
If  purposeful  behaviors  originate  in  critical  states,  then  it  should  be  possible  to 
connect  more  dots  in   analogies  with   thermodynamic  systems,   at  least   that  is  
the challenge.  Enacted  behavior  creates  information  and  reduces  the  entropy  of  
the  critical  state.  In comparison, physical critical states  and  phase transitions concern 
energy   and   entropy.   Thermodynamics  creates  structure   and  constrains  molecules 

to better transport energy to more efficiently produce entropy. How does creation of 
information in behavior coincide, or does it? So far, the answer to this question has not 
been forthcoming [Nicolis and Nicolis, 2007]. Perhaps soft assembly of action also 
more effectively dissipates energy, compared to relatively hard-wired behaviors. If so 
then less probable, creative, and rare actions may most  effectively dissipate energy -- or 
maybe we have it exactly backwards. Or perhaps the debt to entropy is only fully paid 
by social systems or ecosystems and not by individuals alone, cf. [Ulanowicz, 2000].

Another challenge also stems from critical states of propensities to act. Propensities, 
in some fashion, anticipate the behavior that will be enacted. Critical states concern the 
future because they  contain anticipated propensities-to-act. However we have not yet 
discussed a mechanism to acquire information about anticipated activities. To meet this 
challenge is important  as, arguably, anticipation is the quintessential cognitive activity 
[Changizi et al., 2008; Jacob, 1982; Jordan, 2008; Jordan and Hunsinger, 2008]. 

The opportunity  to meet this challenge comes from a recent simulation of 
anticipation [Stepp and Turvey, 2009]. The simulation used time-delayed coupling. 
Imagine an environment leader and an organism follower. The organism is coupled by a 
time-delay to the environment. Present states of the environment are coupled to past 
states of the organism. The coupling term is the difference between the current state of 
the environment minus the previous time-delayed state of the organism. In the model, 
the time-delayed organism comes to minimize the difference between its current state 
and possible future states of the environment. In minimizing the difference, the 
organism successfully entrains to future environments, see also [Dubois, 2003].

The simulation also shows Pavlovian learning, perhaps the most well known 
example of anticipation. Imagine now the food served to Pavlov’s dog, the current state 
of the leader environment, which co-occurs in delay-coupling with a past state, a 
sounded bell. The sounded bell’s relation to the food is captured as a regularity  by 
which to anticipate the future. The drooling dog’s unconditioned-response thus becomes 
a means to better contend with uncertainty, to anticipate the arrival of food [Stepp  and 
Turvey, 2009]. Indeed, the delay-coupling model shares formal parallels with a 
contemporary model of conditioned regulation [Dworkin, 1993].

The model predicts, necessarily, that anticipation is based on statistical regularities 
between past and future. Pavlov’s sounded bell preceding dog food might have been 
100% reliable, but most future events are much less certain and can only  be known in 
their statistical broad strokes. Low-frequency large-magnitude oscillations in pink or 
brown noise are examples of broad statistical regularities. Similar regularities occur in 
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chaos which was used to corroborate the prediction. Anticipatory tapping of college 
student participants successfully  distinguished long-range statistical structures of 
different  chaotic  signals  in  metronome  beats  [Stephen  et  al.,  2008].   The 
simulated   model  plus  its  empirical  support   suggest  a  near  term             
opportunity  to  integrate   anticipation   of   the   future   with  anticipatory  propensities 

to act. 

4.3     Piecewise Determinism

We have relied throughout on a control parameter of task coupling that takes on 
different values based on task and participant. If this parameter changes its values 
midstream, so to speak, during performance of the task, it  may also explain piecewise 
determinism. Piecewise determinism is behavior that changes abruptly  and 
discontinuously [Riley and Turvey, 2002]. For example, a task coupling may change 
with lapsed attention or vigilance, a change in strategy, or some other reorganizing 
change. Task performance may even change contingent on where the previous trial’s 
performance leaves the performer, regarding the next trial’s task demands.

Piecewise determinism illustrates a challenge for measurement that stems from 
blind spots inherent in spectral analyses and other linear methods to estimate scaling 
exponents. Spectral analyses assume that data series express idealized dynamics, 
smoothly  continuous over time. The assumptions are called Lipschitz conditions of 
equations that are everywhere differentiable [Strogatz, 1994; Zak, 1993]. Analyses that 
assume Lipschitz conditions are blind to piecewise determinism. Nevertheless, these 
violations of Lipschitz conditions have empirical consequences, which are realized in 
both quantum mechanics and are also mundane features of behavior [Zbilut, 2004]. In a 
key-press experiment, for example, the finger approaches a singular solution, the 
contact point, in finite time (response time). ‘Singular solutions in finite time’ are a 
predicted ‘pathology’ of systems that violate Lipschitz conditions [Strogatz, 1994]. 
Across trials, successive ‘intersecting singular solutions’ occur when the finger presses 
the same key repeatedly, another pathology confirmed.

Violations of Lipschitz conditions are found in system behaviors that start and stop 
and repeat themselves in piecewise determinism. The fact that  piecewise behaviors have 
explanations in quantum mechanics presents an opportunity to broach piecewise 
determinism in human behavior, cf. [Giuliani et al., 1996]. Formal analogies can 
bootstrap  studies of piecewise human behavior, an opportunity also recommended by a 
growing menagerie of recognizably quantum-like phenomena in cognitive science 
[Atmanspacher et al., 2008; Atmanspacher et al., 2006; Bruza and Cole, 2005; Bruza et 
al., 2009; Kelso and Tognoli, 2007; Nelson and McEvoy, 2007; Turvey and Moreno, 
2006; Van Orden et al., 2010]. 

Piecewise determinism has also been discovered in task coupling data. Reanalyses 
of data series from Wagenmakers et al. [2004] and Van Orden et al. [2003] found 
piecewise determinism, where none had been reported previously [Ihlen and Vereijken, 
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in press].   In these data,  the evidence for  piecewise-determinism  is like abrupt 
changes  in  spectral  slopes  and  scaling  exponents  during data collection.   The 
abrupt  changes  are  also  equivalent  to  abrupt  changes  in  fractal  dimension.      
Thus  piecewise  data series  divide  into  pieces  with  different  fractal dimensions. 
Data    with   multiple   fractal   dimensions   are   called   multifractals     and   it     was 

advances in multifractal analysis that made possible the detection of piecewise-
determinism. Previous multifractal methods required much more data than these series 
contained [Van Orden et al., 2003]. 

Contemporary wavelet methods are multifractal analyses to analyze shorter data 
series. Wavelet methods detect abrupt local changes in fractal dimension using a 
moving cone of wavelets; the tip of the cone hits each data point in its turn to examine 
local task coupling. Wavelet analysis yields a second measured aspect or dimension of 
data series along with a scaling exponent. Task coupling varies along two outcome 
measures: a center value and a spectrum of values around the center. The center value is 
approximately equal to the value got from a monofractal analysis, so center values can 
be expected to corroborate changes toward pink noise or departing from pink noise. In 
addition however the width of the spectrum, around the center value, varies from wide, 
to narrow, to virtually no dispersion at all, and the width varies independently of the 
center value and gives independent information about task coupling (Espen Ihlen & 
Beatrix Vereijken, personal communication, August 12, 2009). 

The extra outcome measure allows that different task-person couplings may  be 
more-or-less multifractal along with being more-or-less pink, a kind of more-or-less 
piecewise homeorhesis. It  remains to be discovered whether optimal coupling will turn 
out to be multifractal pink, so to speak, or monofractal pink, or sometimes one, 
sometimes the other. By comparison, a protracted debate about heart dynamics 
concludes that cardiovascular wellness is associated with healthy multifractal dynamics 
[Baillie et al., 2009] versus unhealthy monofractal brown noise in congestive heart 
disease [Ivanov et al., 1999]. 

4.4     Joint Action 

We began this essay with two examples, a barrel racer racing and a teacher teaching, to 
introduce the central ideas of coupling and coordination. The focus throughout, though, 
has been the task performance of individuals, and not the coupling between multiple 
actors as in the joint action of horse and barrel racer. The rider's skill, to move jointly 
with her horse, and the horse’s skill, to move jointly with the rider, are the basis for their 
expert coupling to the race course. With skill, coordinative structures emerge in joint 
action between these members of different species. Joint actions include many 
opportunities for complexity science, and we remedy the omission in this last section.

Recent efforts on joint action promise a synthesis or rapprochement between 
conventional science and complexity  science. The opportunity came into being with the 
recognition of language as joint action [Clark, 1996] and an emphasis on the role of 
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language to facilitate coordination [Brennan and Hanna, 2009]. Notice the implicit 
feedback loop from action-to-language and language-to-action. This feedback loop 
allows joint attention to reduce demands on language communication in a joint task, for 
example [Clark and Krych, 2004]. Coordination cannot be encapsulated in a task-person 
coupling; it emerges across actors. 

The capacity for joint action is present within the first year of life [Carpenter, 2009] 
and constraints that emerge in joint interaction affect the architecture of cognition 
[Sebanz et al., 2006]. Notice another feedback loop, joint action supports cognitive 
development that makes more and new joint  actions possible. Similar but much slower 
feedback processes have been posited in the prehistory of human evolution, and the 
posited feedback loops are tested in experimental semiotics to see whether similar joint 
actions among contemporary  participants bootstrap modes of communication 
[Galantucci, 2009]. 

Joint action studies discovered coordinative structures that emerge across 
individuals. In the classic demonstration, human participants swung their legs together 
as paired volunteers [Schmidt, 1989]. One of two coordinated patterns emerged: in-
phase or anti-phase leg movements between the pairs. Phase dynamics of paired leg 
swinging revealed phase transitions from one pattern to the other, with concomitant 
catastrophe flags [Schmidt et al., 1990]; see also [Richardson et al., 2007]. 

Again, the central tenet of complexity science is that  common principles of 
emergence operate at multiple levels of organization in complex systems -- individuals, 
dyads, groups, society -- though each level may also bring into existence new 
possibilities for action [Marsh et al., 2009]. For example, both conventional and 
complexity studies of joint action suggest that coordination is the basis of social 
affiliation, and social affiliation is crucial for individual health and emotional wellbeing, 
another feedback loop. 

Conventional studies discovered a predictive relation between social affiliation and 
non-conscious mimicry [Lakin and Chartrand, 2003]. The details of coordination 
dynamics greatly expanded this finding. A variety of manipulations affect the capacity 
of two individuals to entrain and the same manipulations determine how positive, 
friendly, and harmonious volunteers rate the experience, and each other as possible 
teammates [Marsh et al., 2006; 2007]. The degree of entrainment determines whether 
volunteers like each other [Ouillier et al., 2008].

The strength of entrainment falls off depending on whether individuals can fully 
focus attention on each other [Richardson et al., 2007]. The basis for entrainment need 
not be visual however [Richardson et al., 2005]. Two people can perform as one, 
although they receive only indirect auditory  feedback about each other’s actions in their 
separate roles within a shared eye-hand coordination task [Knoblich and Jordan, 2003]. 
Subtle cues organize dynamics across the two people to perform together as well as a 
single person with all the information. Does this imply emergent joint intentionality?

Van Orden, Kloos, and Wallot                                                                                                                                      672                                                                                                                                                



Joint action has also become a focal area to introduce new nonlinear methods. 
Cross-Recurrence analysis, a nonlinear counterpart to correlation, was developed 
specifically to study  shared movements, as in conversations  [Shockley,  2005]  and  
was anticipated in Recurrence Quantification Analysis, a nonlinear analog of 
autocorrelation [Weber and Zbilut, 2005]. These methods were built upon the 
mathematical  theorems  of  phase  space reconstruction, mentioned much earlier. 
Cross-Recurrence analysis  was  used  first  in  cognitive science  to  quantify  emergent, 

coordinative structures between persons in conversation. Joint gaze and joint  body 
posture show spontaneous coordination that predicts mutual understanding. (For a 
review see [Shockley et al., 2009].) 

Nonlinear methods have become more common and existing nonlinear tools, plus 
new tools in development, promise a truly fresh understanding of behavioral data, e.g. 
[Marwan, 2009; Riley and Van Orden, 2005; Zbilut and Marwan, 2008]. In retrospect, 
earlier accomplishments in cognitive science, though inspired by new theoretical ideas 
from complexity science, were also restricted by caveats on data tools from linear 
analysis. Future discoveries will benefit  from new nonlinear tools that minimize or 
dispense with such caveats. We stand now, surrounded by opportunities, at  a cusp 
linking theory with new rigorous methods for this science of complexity.
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